40 research outputs found

    Waggle dance distances as integrative indicators of seasonal foraging challenges

    Get PDF
    Even as demand for their services increases, honey bees (Apis mellifera) and other pollinating insects continue to decline in Europe and North America. Honey bees face many challenges, including an issue generally affecting wildlife: landscape changes have reduced flower-rich areas. One way to help is therefore to supplement with flowers, but when would this be most beneficial? We use the waggle dance, a unique behaviour in which a successful forager communicates to nestmates the location of visited flowers, to make a 2-year survey of food availability. We “eavesdropped” on 5097 dances to track seasonal changes in foraging, as indicated by the distance to which the bees as economic foragers will recruit, over a representative rural-urban landscape. In year 3, we determined nectar sugar concentration. We found that mean foraging distance/area significantly increase from springs (493 m, 0.8 km2) to summers (2156 m, 15.2 km2), even though nectar is not better quality, before decreasing in autumns (1275 m, 5.1 km2). As bees will not forage at long distances unnecessarily, this suggests summer is the most challenging season, with bees utilizing an area 22 and 6 times greater than spring or autumn. Our study demonstrates that dancing bees as indicators can provide information relevant to helping them, and, in particular, can show the months when additional forage would be most valuable

    Automatic methods for long-term tracking and the detection and decoding of communication dances in honeybees

    Get PDF
    The honeybee waggle dance communication system is an intriguing example of abstract animal communication and has been investigated thoroughly throughout the last seven decades. Typically, observables such as waggle durations or body angles are extracted manually either directly from the observation hive or from video recordings to quantify properties of the dance and related behaviors. In recent years, biology has profited from automation, improving measurement precision, removing human bias, and accelerating data collection. We have developed technologies to track all individuals of a honeybee colony and to detect and decode communication dances automatically. In strong contrast to conventional approaches that focus on a small subset of the hive life, whether this regards time, space, or animal identity, our more inclusive system will help the understanding of the dance comprehensively in its spatial, temporal, and social context. In this contribution, we present full specifications of the recording setup and the software for automatic recognition of individually tagged bees and the decoding of dances. We discuss potential research directions that may benefit from the proposed automation. Lastly, to exemplify the power of the methodology, we show experimental data and respective analyses from a continuous, experimental recording of 9 weeks duration

    Honeybee linguistics—a comparative analysis of the waggle dance among species of Apis

    Get PDF
    All honeybees use the waggle dance to recruit nestmates. Studies on the dance precision of Apis mellifera have shown that the dance is often imprecise. Two hypotheses have been put forward aimed at explaining this imprecision. The first argues that imprecision in the context of foraging is adaptive as it ensures that the dance advertises the same patch size irrespective of distance. The second argues that the bees are constrained in their ability to be more precise, especially when the source is nearby. Recent studies have found support for the latter hypothesis but not for the “tuned-error” hypothesis, as the adaptive hypothesis became known. Here we investigate intra-dance variation among Apis species. We analyse the dance precision of A. florea, A. dorsata, and A. mellifera in the context of foraging and swarming. A. mellifera performs forage dances in the dark, using gravity as point of reference, and in the light when dancing for nest sites, using the sun as point of reference. Both A. dorsata and A. florea are open-nesting species; they do not use a different point of reference depending on context. A. florea differs from both A. mellifera and A. dorsata in that it dances on a horizontal surface and does not use gravity but instead “points” directly toward the goal when indicating direction. Previous work on A. mellifera has suggested that differences in dance orientation and point of reference can affect dance precision. We find that all three species improve dance precision with increasing waggle phase duration, irrespective of differences in dance orientation, and point of reference. When dancing for sources nearby, dances are highly variable. When the distance increases, dance precision converges. The exception is dances performed by A. mellifera on swarms. Here, dance precision decreases as the distance increases. We also show that the size of the patch advertised increases with increasing distance, contrary to what is predicted under the tuned-error hypothesis

    Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding

    Get PDF
    Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances

    Hive Relocation Does Not Adversely Affect Honey Bee (Hymenoptera: Apidae) Foraging

    Get PDF
    Honey bees, Apis mellifera, face major challenges including diseases and reduced food availability due to agricultural intensification. Additionally, migratory beekeeping may subject colonies to a moving stress, both during the move itself and after the move, from the bees having to forage in a novel environment where they have no knowledge of flower locations. This study investigated the latter. We moved three colonies housed in observation hives onto the campus from a site 26 km away and compared their foraging performance to three similarly sized colonies at the same location that had not been moved. We obtained data on (1) foraging performance by calculating distance by decoding waggle dances, (2) hive foraging rate by counting forager departure rate, (3) forage quality by assessing sugar content of nectar from returning foragers, and (4) forager success by calculating the proportion of bees returning to the nest entrance with nectar in their crop. We repeated this 3 times (August 2010, October 2010, and June 2011) to encompass any seasonal effects. The data show no consistent difference in foraging performance of moved versus resident hives. Overall the results suggest that moving to a new location does not adversely affect the foraging success of honey bees

    Honey bee foraging distance depends on month and forage type

    Get PDF
    To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other

    Bourgeois behavior and freeloading in the colonial orb web spider Parawixia bistriata (Araneae, Araneidae)

    Get PDF
    Spiders of the tropical American colonial orb weaver Parawixia bistriata form a communal bivouac in daytime. At sunset, they leave the bivouac and construct individual, defended webs within a large, communally built scaffolding of permanent, thick silk lines between trees and bushes. Once spiders started building a web, they repelled other spiders walking on nearby scaffolding with a "bounce" behavior. In nearly all cases (93%), this resulted in the intruder leaving without a fight, akin to the "bourgeois strategy," in which residents win and intruders retreat without escalated contests. However, a few spiders (6.5%) did not build a web due to lack of available space. Webless spiders were less likely to leave when bounced (only 42% left) and instead attempted to "freeload," awaiting the capture of prey items in nearby webs. Our simple model shows that webless spiders should change their strategy from bourgeois to freeloading satellite as potential web sites become increasingly occupied

    En garde: rapid shifts in honeybee, Apis mellifera, guarding behaviour are triggered by onslaught of conspecific intruders.

    Get PDF
    Article Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. In a recognition context, discriminating agents decide whether to accept or to reject. In the honeybee, entrance guards distinguish between nestmates and intruders. Those below a threshold of dissimilarity are accepted. However, the threshold is dependent on ecological conditions and may shift to become either restrictive or permissive, depending on the frequency of intrusion and cost of admitting an intruder. Previous research on the honeybee has shown that both the number of guards and their acceptance threshold to conspecific non-nestmates can change dramatically over weeks owing to changing nectar availability and robbing intensity. This project investigated whether these changes could also occur rapidly, over minutes, in response to sudden increases in conspecific intruders (robber bees). We induced high levels of intrusion at nest entrances and determined changes in the number of guards, the number of fights per guard, and the acceptance thresholds of guards. Our results show a rapid response within 15 min. At the level of individual guards, acceptance declined from 83 to 55% for nestmates and 67 to 43% for conspecific nonnestmates. Also, per individual guard, mean fights increased from 0.005 to 0.06 fights/guard. At the colony level, the mean number of guards at the entrance rose from 1.9 to 2.3, and overall acceptance in a 3-min trial declined from 74 to 52% for nestmates and 59 to 30% for conspecific non-nestmates. These results show that honeybees can make rapid behavioural shifts at both the colony and the individual levels

    Emerging Themes from the ESA Symposium Entitled “Pollinator Nutrition: Lessons from Bees at Individual to Landscape Levels”

    Get PDF
    Pollinator populations are declining (Biesmeijer et al., 2006; Brodschneider et al., 2018; Cameron et al., 2011; Goulson, Lye, & Darvill, 2008; Kulhanek et al., 2017; National Research Council, 2007; Oldroyd, 2007), and both anecdotal and experimental evidence suggest that limited access to high quality forage might play a role (Carvell, Meek, Pywell, Goulson, & Nowakowski, 2007; Deepa et al., 2017; Goulson, Nicholls, Botias, & Rotheray, 2015; Potts et al., 2003, 2010; Vanbergen & The Insect Pollinators Initiative, 2013; Vaudo, Tooker, Grozinger, & Patch, 2015; Woodard, 2017). Multiple researchers are earnestly addressing this topic in a diverse array of insect-pollinator systems. As research continues to be published, increased communication among scientists studying the topic of nutrition is essential for improving pollinator health
    corecore